Exponential stability of numerical solutions to stochastic age-dependent population equations

نویسندگان

  • Wan-Kai Pang
  • Ronghua Li
  • Liu Ming
چکیده

The main aim of this paper is to investigate the exponential stability of the Euler method for a stochastic age-dependent population equations with Poisson random measures. It is proved that the Euler scheme is exponentially stable in mean square sense. An example is given for illustration. Keywords—Stochastic age-dependent population equations, Poisson random measures, Numerical solutions, Exponential stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential stability of numerical solutions to stochastic age-dependent population equations with Poisson jumps

The main aim of this paper is to investigate the exponential stability of the Euler method for a stochastic age-dependent population equations with Poisson random measures. It is proved that the Euler scheme is exponentially stable in mean square sense. An example is given for illustration. Keywords—Stochastic age-dependent population equations, Poisson random measures, Numerical solutions, Exp...

متن کامل

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

Exponential stability of numerical solutions for a class of stochastic age-dependent capital system with Poisson jumps

Recently, numerical solutions of stochastic differential equations have received a great deal of attention. Numerical approximation schemes are invaluable tools for exploring its properties. In this paper, we introduce a class of stochastic age-dependent (vintage) capital system with Poisson jumps, and investigate the convergence of numerical approximation. It is proved that the the numerical a...

متن کامل

Almost sure exponential stability of numerical solutions for stochastic delay differential equations

Using techniques based on the continuous and discrete semimartingale convergence theorems, this paper investigates if numerical methods may reproduce the almost sure exponential stability of the exact solutions to stochastic delay differential equations (SDDEs). The important feature of this technique is that it enables us to study the almost sure exponential stability of numerical solutions of...

متن کامل

Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 183  شماره 

صفحات  -

تاریخ انتشار 2006